General comment TYPE OF DATASET
Each chemical compound is provided in aggregated (LCI results) and level-1 disaggregated (unit process, single operation) form. For more information, see the report (ecoinvent Association, 2020, Data on the Production of Chemicals created for the EU Product Environmental Footprint (PEF) transition phase implementation, www.ecoinvent.org, ecoinvent Association, Zurich, Switzerland). This dataset represents the LCI results.
PROCESS DESCRIPTION
Acetone is mainly used as a solvent in the chemical industry (Gallardo Hipolito 2011). Acetone is a co-product of the cumene phenol process, also known as the Hock process (Gallardo Hipolito 2011). Phenol global production in 2008 was of 9.9 million tons, of which 98.5% was produced through this process (SRI consulting). Global production of acetone is around 5.5 million metric tons (Gallardo Hipolito 2011).
The activity starts when the raw materials enter the process.
Materials entering the process are included as well as energy uses, infrastructure and emissions.
References
ecoinvent (2017) Data on the Production of Chemicals created for the EU Product Environmental Footprint (PEF) pilot phase implementation, www.ecoinvent.org, ecoinvent Association, Zürich, Switzerland
Gendorf (2016) Umwelterklärung 2015, Werk Gendorf Industriepark, www.gendorf.de
Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://daim.idi.ntnu.no/masteroppgaver/006/6362/tittelside.pdf, accessed 6 January 2017
SRI consulting. In: Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://daim.idi.ntnu.no/masteroppgaver/006/6362/tittelside.pdf, accessed 6 January 2017
Gallardo Hipolito, M. 2011. Life Cycle Assessment of platform chemicals from fossil and lignocellulosic biomass scenarios LCA of phenolic compounds, solvent, soft and hard plastic precursors. Master in Industrial Ecology. Norwegian University of Science and Technology Department of Energy and Process Engineering. Retrieved from: http://e-archivo.uc3m.es/bitstream/handle/10016/14718/Life%20Cycle%20Assessment%20of%20platform%20chemicals%20from%20fossil%20and%20lignocelulose%20scenarios.%20Martin%20Gallardo.pdf?sequence=2, accessed 6 January 2017
Saygin, D. 2009. Chemical and Petrochemical Sector Potential of best practice technology and other measures for improving energy efficiency. IEA information paper. IEA/OECD. Retrieved from: https://www.iea.org/publications/freepublications/publication/chemical_petrochemical_sector.pdf, accessed 6 January 2017
Water content of the reference product: 0.0 kg
Biogenic carbon content of the reference product: 0.0 kg
DATA QUALITY ASSESSMENT
The data quality ratings for the datasets were determined as the average of the 5 individual ratings for Technological Representativeness, Geographical Representativeness, Time-related representativeness, Precision/uncertainty, and implementation of the End of Life Formula. The final scores for these 5 descriptors were determined by the independent, external reviewer after a discussion with the internal reviewers. The basis for this determination was generally a contribution analysis of the material and energy inputs as well as direct resource uses and emissions. This process was required by the tender.
The contribution analysis is based on the most important flows in the dataset, defined in the tender specifications as "the unit processes contributing cumulatively to at least to 80% of the total environmental impact based on characterised and normalised results". In addition to unit processes, direct emissions also qualified as input exchanges for this approach. For the normalization, the normalisation factors "EC-JRC Global (2010 or 2013), per person" available at http://eplca.jrc.ec.europa.eu/?page_id=140 were used. For each parameter, the DQR scores were chosen to best reflect the conditions and quality of the amount value, the appropriateness of the chosen exchange for the specific needs of the system under analysis, and the quality of the foreground and background data for aggregated inputs of exchanges from the technosphere, i.e. not direct emissions or resource uses.
ENERGY AND TRANSPORT INFORMATION SOURCE
Energy and transport was used in both the foreground and background of this dataset. When building the dataset, energy and transport demands were supplied directly by datasets provided by Sphera. The background for every other input from technosphere uses a modified version of the ecoinvent database, created specifically for the PEF. In this version, every instance of energy and transport supply, anywhere in the database, was replaced by a dataset from Sphera. This ensures that every demand for energy and transport, in the foreground and in the background, is supplied by a Sphera dataset.
BILL OF MATERIALS
The bill of material includes the following inputs:
chemical factory, organics: 1.84575859807e-10 unit
cumene: 0.620333595218 kg
heat, in chemical industry: 1.08438317636 MJ
nitrogen, liquid: 0.00876735334082 kg
tap water: 0.0119974308874 kg
wastewater, average: -1.2458870537e-06 m3
Electricity: 0.191958894199 kWh.
NOT INCLUDED EXCHANGES
All known elementary exchanges are included.
PROCESS DIAGRAM LEGEND
The file 'Diagram of data for chemicals EF3.0' presents the general structure of the processes created for the EF chemical data. A complete flow diagram for the selected process is available in the relevant section. |